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Evaluation of fibre strength characteristics on 
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A proper description of the fibre fragmentation test becomes more and more important because of 
the continual development of new types of fibres, an example being the oxide composite fibres 
tested in the present work. An attempt at a strict formulation of the problem involved in the 
description of the fibre fragmentation test is presented. It takes into account a distortion of fibre 
strength distribution function caused by the fibre breakage process occurring under increasing 
external load. The fibre strength distribution function is determined by a distribution function of 
defects on a fibreas well as the distribution function of the defect strength. The formulation of the 
problem considered results in a system of differential equations which is solved assuming some 
simplifications. The solution leads to a choice of a particular set of statistical fibre strength 
characteristics. The procedure is applied to oxide composite fibres developed for a high 
temperature use. 

1, I n t r o d u c t i o n  
Real use of a composite material demands a large 
number of properties to be evaluated. A preliminary 
evaluation of such mechanical properties as tensile 
strength, fracture toughness, creep and creep strength, 
which depend upon composite parameters like fibre 
volume fraction, interface strength, etc., can now be 
done by calculation. It is based on both reliable mech- 
anical models and proper input parameters of the 
constituent materials. Results of the calculations are 
to be used for the optimization of the composite struc- 
ture. Finally, composite specimens with an optimal 
structure have to pass the necessary mechanical test- 
ing. 

The most important input parameters are strength 
characteristics of fibres. The usual procedure for 
evaluating fibre strength is either a direct measure- 
ment of the tensile strength of fibres of various length 
or obtaining the strength scatter of fibres of a constant 
length and then determining a scale dependence of the 
fibre strength, assuming the validity of the Weibull 
distribution for the fibre strength [1, 2]. Such ap- 
proaches have a disadvantage when using the results 
to estimate the composite strength. Namely, a scale 
dependence obtained by such a method does not ne- 
cessarily coincide with that to be used in a corres- 
ponding failure model, because the appropriate 
dependence is influenced by removing fibre defects, 
occurring in a definite vicinity of the fibre break, from 
the active defect population. 

No doubt the best way to determine strength char- 
acteristics of fibres to be used as a reinforcement in 
composites is to test a composite sample. The proced- 
ure might be very similar to that usually called "fibre 
fragmentation test" (see, for example, [3]), except that 
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the latter is used, as a rule, for the evaluation of the 
fibre/matrix interface strength. But in fact, there is no 
real necessity to know fibre characteristics to evaluate 
the interface strength, and vice versa. It is obviously 
possible to construct a variety of models containing 
both sets of characteristics to be evaluated. 

Curtin [4] developed a theory of fibre fragmenta- 
tion in a single filament composite. He took into 
account a decrease of the effective fibre length equal to 
the orig!nal length minus the sum of so called recovery 
lengths around the fibre breaks. Then the solution of 
a set of differential equations describing kinetics of the 
accumulation of further fibre breaks was obtained, 
assuming the strength distribution for a decreasing 
effective fibre length to be unchanged. This assump- 
tion certainly leads to a decrease of exactness of the 
theory and the difference betweetl the solution ob- 
tained and the real situation remains unknown. It 
should be noted that the author [4] compared his 
calculation with the results of a simulation of the fibre 
fragmentation process based on the Monte Carlo pro- 
cedure performed previously by Henstenburg and 
Phoenix [5]. 

Mileiko and Glushko [6] evaluated the dependence 
of fibre strength upon the average free fibre length 
remaining after exclusion of the sum of recovery 
lengths surrounding the points of fibre breaks. In this 
case neither fibre strength distribution nor fibre de- 
fects distribution were considered. 

In the present paper a new theory of the fibre 
fragmentation test is developed and used to obtain 
strength characteristics of fibres tested in an experi- 
ment of the fibre fragmentation type. Unlike the 
model developed by Mileiko and Glushko [6], a cer- 
tain fibre defect distribution is an essential point of the 
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model, and unlike a theory evaluated by Curtin [4], 
the defect distribution, and therefore the strength dis- 
tribution, of the fibre is changing continuously with 
removal of the defects caused by fibre breakage. The 
problem formulated in a strict enough way does not 
look a trivial one, moreover it can have a non single 
solution. 

The experiments have been carried out on a new 
type of oxide composite fibres which can be used as 
reinforcement at temperature as high as 1100-1200 ~ 
[6, 7]. 

Obviously, it is possible to use a more sophisticated 
shear stress profile, that will lead to a different fibre 
stress profile. The subsequent analysis will be valid 
provided the stress distribution satisfies two restric- 
tions. First, the stress recovery length should not de- 
crease with increasing of p. Secondly, the fibre stresses 
at a particular point within the stress recovery length 
should not increase with increasing p. Note, in the case 
of a purely elastic system with a perfect interface it is 
impossible to satisfy the second condition, so for such 
a system an alternative approach has to be developed. 

2. A model  of f ibre breakage 
2.1. Fibre stress distribution 
Let us consider in the short term the axial stress 
distribution in a fibre around a break point, within the 
framework of the unidirectional approach. Let re be 
the fibre radius, and the matrix occupies infinite vol- 
ume in the z-axis direction, re < r < R. Away from 
a point of the fibre break, stresses p and CYm in the fibre 
and matrix, respectively, are given by a solution of the 
system of equations: 

p = E l 8  

am = Om(~) 

Q = prcr 2 + (YmK(R 2 - -  r f  2) 

(1) 

Here Q is the axial load applied to a single filament 
composite and e is the axial strain, which is supposed 
to be the same for the matrix and fibre. The 
stress-strain curve of the matrix material, C~m(e), is 
assumed to be a known function. Excluding e from 
Equation 1 yields a value of p, which is a function of 
specimen geometry, applied load, Q, and elasto-plas- 
tic properties of the components. 

At the fibre break point z = 0, we have fibre stress 
= 0 and stress recovery curve o(z) depends strongly 

on elastic-plastic behaviour of the matrix and 
fibre/matrix interface properties. To deal with the situ- 
ation we shall follow a well known scheme suggested 
by Kelly and Tyson [8]. Namely, the shear stress 
distribution on the fibre/matrix interface is approxim- 
ated by piecewise function T(z), z = _+ z* on length l, 

- 0 outside the recovery length. 
Then the conditions of the mechanical equilibrium 

yield 

a s  

z 
at O ~ z < ~ l ( p )  

c~(z) = rf 
p(Q) at z > l(p) 

(2) 

Length, 2/(p), of the stress recovery zone is defined 

rfp (3) 
l(p) = 2~* 

This length grows monotonically when applied 
stress p increases. But the value of axial stresses o(z) 
within the recovery length Iz] < l(p) does not change 
with an increase of stress p in the fibre. Therefore, no 
other breaks may occur within length 2l(p) around an 
existing break. 
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2.2. Multiply fibre breakage 
The fibre carries a set of defects statistically distrib- 
uted along it. Fibre stress p sufficient tO cause a defect 
to transform into a fibre break is to be called the defect 
strength. Now we shall introduce a strength distribu- 
tion function for a set of the defects, as well as a distri- 
bution function of defect points characterized by mean 
number,  Z, of defects per unit length. 

When the axial fibre stress is p, all defects of 
strength cy < p are located within the recovery lengths 
and consequently may not transform into fibre breaks. 
Hence, the rest of the defects, which may transform 
into breaks, are located outside the recovery length 
and have strength greater than p. Therefore, with 
increasing stress p, the distortion of the strength distri- 
bution function N (cy) will take place for a set of defects 
located outside the recovery lengths. Let the current 
strength distribution function be denoted N(~Ip), that 
is the probability for a defect to have strength o* < cy, 
while fibre stress is equal to p. We can write 

N ( . )  - N(p)/1 - -  N(p) ,  ~ > p 
N(cylp) = ~ 0 ,  cy~<p (4) 

Note that in Curtin's theory [4] the distortion of the 
strength distribution function was not taken into ac- 
count. 

We now consider a single filament composite with 
total fibre length L >> l(p). Let the number of current 
fibre breaks be sufficiently large, k(p) >> 1. Obviously, 
the value of k is physically a discrete one, but to make 
the analysis simpler we will treat k as a continuous 
function of p. Let the total average length of the 
recovery zones be l~(p). Fibre stress, p, is the external 
parameter. If a distance between neighbour breaks is 
larger than 2l(p), then the value of IE(p) can be easily 
determined, lE(p) = 2k(p)l(p). But due to the stochastic 
nature of defect distribution this is true for low values 
of p only, for a general case we have 

/E(P) ~< 2kl(p) 

IE(P) ~< L 

If fibre stress, p, gains increment, dp, then the num- 
ber of the breaks increases by value dk. This increment 
is proportional to the density of defects which can be 
broken; ~,, and to the remaining effective fibre length 
L - /E(P), i.e. 

dk  = )~(L -- IE(p)){N(p + dplp) - N(pIp)} 
(5) 



The expression in the Curly brackets defines the 
probability for a defect to have strength ~ [ p ,  
p + dp]. Taking into account Equation 4, we can 
rewrite the last equation as 

N'(p) 
k'(p) = ~,(L - lE (p)) -, --_ 

1 

where N(p) is the original strength distribution func- 
tion. Equation 6 accounts for new fibre breaks to arise 
outside the recovery length only. This equation de- 
scribes the fibre breakage process provided function 
IE(p) is known. 

Let the recovery zones be combined in n(k) "is- 
lands", (n ~< k). The average distance between neigh- 
bouring islands can be written as 

d L -- 1E(p) 

When a new fibre break occurs, one of three events 
can follow. First, a new island arises, and 
n(k + 1) = n(k) + 1. That  is obviously the case when 
the new recovery length does not intersect with a pre- 
vious one. Second, the new recovery length intersects 
with a previous zone, then the number of islands 
remains unchanged, n(k + 1) = n(k) + 0. Third, 
a new recovery length intersects with two previous 
ones, then the number of i s l ands  decreases, 
n(k + 1) = n(k) - 1. That  means 

n(k + 1 ) -  n(k) = 5, (8) 

where 5, takes one of the values, + 1, 0, - 1. The 
corresponding probabilities are ~+~, ~0  and ~ - 1 ,  
respectively. 

Assuming function n(k) to be continuous, Equation 
8 written in the finite difference form can be approxim- 
ated by the ordinary differential equation 

d - 
n(k)~Sn = #+1 -- ~ - 1  (9) 

Here the bar over a symbol means averaging. So we 
have written the equation to describe the evolution of 
the islands configuration when k is increasing. 

Strictly speaking, an island' size increase should be 
taken into account with increasing value of p. Tl~at 
brings the possibility of the joining of two islands 
between two breaks events, but it can be shown that 
these effects play a secondary role. So we have 

d n  
-- k ' ( p ) ( ~ + x  - ~ - ~ )  (10) 

dp 

Probabilities N+I,  ~0  and ~ - x  can be easily ob- 
tained if the distribution function of the distances 
between neighbouring islands, ~(x), is known. The 
average distance between islands defined by Equation 
7 can be written as 

E = x~'(x)  dx ( l l )  
0 

Using Equation 11 and assuming that a new fibre 
break can arise with equal probability at any point of  

the fibre outside the recovery length, we obtain 

It(p) I2/(p)  
d ~ _ t  = xqt'(x) dx + (21(p) - x) ~'(x) dx 

d o  dr(p) 

I 
2/(p) 

(6) dNo = .J .p) (x - l(p))@'(x) dx 

+ 2l(p) ~'(x) dx (12) 
21(p) 

6 1 ~ + 1  = (X - 21(p))~'(x) dx 
21(p) 

Now we calculate the rate of change of the total 
recovery length with increasing fibre stress, p. A con- 
tribution to the value of the change of the sizes of the 
islands at a constant number of fibre breaks will be 

(7) alE = 2n(p)l'(p) (13) 
~P k=~o~st 

The contribution of a new fibre break can be written 
a s  

ale p= const ~ -  -~ El (14) 

( 

5l = )  x a t l x < l ( p )  

L l + (x - 1 )  L at x >~ l(p) 
x 

Here x is the distance between neighbouring islands. 
Averaging the value of 6t over all probable values of x, 
we obtain 

o~ 12(p) , "X" 

f'~P' + 

05) 

Note that 

diE(p) alE(p) dp + ~IEdk --  ~p ~ dp 

Therefore, Equations 13 and 14 yield 

d/E(p) 
= 2n(p)l'(p) + k ' (p)~ (16) 

dp 

Now, setting initial conditions, corresponding to 
a lower value of defect strength Pmi., for the system of 
ordinary differential equations as 

k(Pmin)  = n(Pmin)  = 1, lE(Pmin ) = 2/(Pmin) 

(17) 

we can find a solution to the system given by Equa- 
tions 6, l0 and 16 and describe the process of fibre 
breakage. 

2.3. An ex ac t  so lu t ion  for low fibre s t r e s ses  
A solution of the system given by Equations 6, 10 and 
16 can be easily obtained for the case of low fibre 
stresses, i.e. 

0 < p -- Pmin '~ Pmax - -  Pmin 

It is a set of asymptotic expansions of the expression 
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for the corresponding parameters 

n(p) = k(p) 

IE(p) ---- 21(p)k(p) 

and 

k(p) = - L L x  In(1 - N(p)) 

Here N(pmj,) = 0 is assumed, and Pmax is the maximum 
value of p corresponding t o  lE(Pm,x)=L and 
n(pm,x) = i. 

2.4.  S i n g u l a r  a p p r o x i m a t i o n  
To proceed with a numerical solution of the system of 
Equations 6, 10 and 16 we need to evaluate distribu- 
tion function, O(x) [-see Equation 11]. To simplify the 
evaluation let us approximate function O'(x) by 
Dirak's  function, 

~'(x) = 8(x - d) (18) 

where average distance between neighbour islands dis  
defined by Equation 7. 

Then Equations 9, t2 and 15 yield 

6 
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=2 

1 

I i  i i 
15 20 

Number of fibre breaks 

Figure 1 The average number of islands of the recovery zones 
versus the number of fibre breaks. Composite parameters are 
z*=40MPa, ~=1000MPa, Pm~.=500MPa, ~=4mm-1, 
L = 35mm, rf = 0.18ram. 

( 9/ 
~, = l  1 - d at d>t l (p)  (19) 

( - -  1 a t  d < I(p) 1.o I ' ' 

12 _ 
gz - 2 1 -  ~ at d>~l(p) (20) o.8 

d at d <  l(p) ~ = 2 

For  the distribution function of the defect strength 
we shall use a Weibull type function, 0.6 

N(cr) = (21) 
0.4 

Hence the average strength of the defects will be 

= I~Pmax ~ ~ p-mln 
13-t- 1 0.2 

The system of Equations 6, 10 and 16 with initial 
conditions given by Equat ion 17 has been solved 0.0 ~ , 
numerically. Dependencies of the average 'number of 0.50 0.75 1.00 
islands upon the number  of fibre breaks are shown in Fibre stress (GPa) 
Fig. 1. The increase in the total length of the recovery 
zones, IE/L, with the applied fibre stress is presented in Figure 2 The total length of recovery zones lE normalized by ori- 

ginal fibre length L versus the applied fibre stress. Composite 
Fig. 2. parameters are the same as those in Fig. 1. 

3. Experimental  procedure 
All the specimens were of an oxide composite 
fibre/copper matrix composite obtained by diffusion 
bonding at a temperature of 600 ~ a pressure of 
80 M P a  and a time of 30 min. Fibre diameter was 
0.38 mm, the length of a specimen and the fibre length 
35 mm. The specimen thickness was about  0.5 mm. 

Tensile tests were carried out using a sufficiently 
rigid machine to record load drops through a normal  
load cell bringing its signal to the Y input of a X-Y 
recorder. An example of the original curve is shown in 
Fig. 3. The stress-strain curve of the pure matrix is 
presented in Fig. 4. 
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Such curves contain all the necessary data to com- 
pare the results of the physical experiment with com- 
puter simulation data to obtain the fibre strength 
characteristics. 

4. Fibre strength characterist ics 
The load applied to a specimen, Qk, which caused 
k-break of the fibre was registered by the X-Y re- 
corder, and a corresponding value of fibre stress, Pk, 
was calculated using Equation 1. The results ob- 
tained in testing three specimens are presented in 
Figs 5-7. 
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Figure 3 The original load-elongation curve for composite speci- 
men no. 38. The maximum load is 245 N, the maximum elongation 
is 1.37 mm. 
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Figure 4 The stress-strain curve of the copper matrix (averaged 
after three tests). 

For the same configurations the Cauchy problem 
was solved for various sets of the input parameters, 
~, 13, z, and fixed values of )~ = 4 mm -1. Also, for 
a particular specimen, the values of Pmin and Pm,x were 
chosen and then fixed. The least squares procedure 
was then used to get the best fit of the calculated 
curves k(p) to the experimental points (Figs 5-7) and 
to choose on this basis proper values of these para- 
meters characterizing a given fibre. The parameters 
are shown in the Table I. 
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Figure 5 The experimental and calculated dependencies of the 
number of fibre breaks upon fibre stress. The fibre strength para- 
meters providing the best fit are shown in the Table I. Composite 
specimen no. 38 (oxide fibre/copper matrix). 
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Figure 6 The experimental and calculated dependencies of the 
number of fibre breaks upon fibre stress. The fibre strength para- 
meters providing the best fit are shown in the Table I. Composite 
specimen no. 39 (oxide fibre/copper matrix). 

5. Conclusions 
An attempt at a strict formulation of the problem 
involved in the description of the fibre fragmentation 
test is proposed, and an approximate solution of the 
problem is analysed to obtain the statistical fibre 
strength characteristics. 

The procedure is developed to interpret the results 
of a tensile test of a single-filament composite. It is 
shown that a complete description of fibre strength 
requires the recording in the experiment a stress-strain 
curve with fibre break points on it and the 
stress-strain curve of the matrix. The technique has 
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Figure 7 The experimental and calculated dependencies of the 
number of fibre breaks upon fibre stress. The fibre strength para- 
meters providing the best fit are shown in the Table I. Composite 
specimen no. 48 (oxide fibre/copper matrix). 

T A B L E  I Strength characteristics of fibres 

Composite [3 6- x* Pmin " Pmax 
no. (MPa) (MPa) (MPa) (MPa) 

38 4.48 1061 42.8 141 1266 
48 4.20 1001 38.1 184 1195 
49 4.55 775 40.1 173 1039 

been applied to a study of oxide composite fibres 
developed for a high temperature use, and appeared to 
give a sound outcome. 
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